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Notations
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enclosed area of box

area of one diaphragm bracing
member

bottom flange area
width of box at top
bimoment (k-in?)
width of box at base

BEF factor for determining the
diaphragm force

BEF factor for determining the
transverse distortional bending
stress

BEF factor for determining the
normal distortional warping
stress

inclined height of box
transverse flexural rigidity
stiffener spacing

effective width of web or flange
plate acting with stiffener

Young’s modulus

Young’s modulus of diaphragm
bracing

force in diaphragm

transverse bending stress in box
plate due to an applied torque

minimum specified yield stress
natural frequency (Hz)

minimum specified compression
strength of concrete

shear modulus
acceleration of gravity
box depth

moment of inertia of box
section

moment of inertia of stiffener
bar and effective portion of web
or flange

warping constant (in6)
effective length factor
constant )
torsional constant (in )
buckling coefficient
simple span length

length of diaphragm bracing
member

diaphragm spacing
in-plane moment
uniformly applied torque
modular ratio

number of box girders in the
bridge

= load
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statical moment (in’)
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diaphragm brace stiffness/box
stiffness/length (nondimensional)

bridge radius

reactions

radius of gyration

section modulus .
warping statical moment (in )
concentrated torque

plate thickness

shear

compatibility shear at center of
box bottom

bending shear

shear connector force
Saint-Venant’s torsional shear
bridge weight per length
AASHTO wheel load factor

normalized warping function
(in?)

. see References 4 and 12

1I/R
distance from a diaphragm

vertical distance to extreme fiber
from neutral axis

angle of skew 1
BEF stiffness parameter (in )
distortional angle (radians)

first derivative of distortion
angle

second derivative of distortion
angle

deflection due to flexure

deformation of bracing member
due to applied torque (in*/ k)

box distortion per kip per inch
of load without diaphragms
(in%/ k)

Poisson’s ratio

normal bending stress

normal distortional warping
stress

transverse bending stress
normal torsional warping stress
Saint-Venant shearing stress
bending shear stress
distortional warping shear stress
torsional warping shear stress
angle of rotation

subtended angle between radial
piers

LVGK,/EI,



Introduction

Steel box girder bridges have
come into common usage in
many countries for a variety
of applications since welding
has permitted their fabrication
with relative ease. Box girders
provide aesthetically pleasing
uncluttered undersurfaces
and reduce the exposed sur-
face needing maintenance.
Box girders are 100 to 1,000
times stiffer in torsion than I-
girders. This torsional stiff-
ness permits the elimination
of many bracing members in

many cases where torsional
loading is large. The large
torsional stiffness affects the
distribution of loads in
multibox bridges.

This booklet examines the
structural behavior of box
bridges and some of the
considerations necessary for
economical box girder design.
Steel boxes not covered by
AASHTO provisions, such as
transit structures and horizon-
tally curved structures, can be
examined using the guides

provided. An appendix
presents a summary of the
Beam on Elastic Foundation
analogy for distortional
stresses in box members. A
liberal bibliography is in-
cluded to assist the designer
when his needs exceed the
scope of this publication.



Structural Behavior
Of Box Girders

Figure 1 shows deformations due to bending and
torsional loads on a box girder. Figure 2a shows
how a load applied away from the shear center of
the box can be separated into bending and tor-

sional components for analysis using superposi-
tion. In Figure 2b the torsional load is further
separated into pure torsional and distortional
components.

Figure 1/Box deformations
due to vertical and torsional loads

(a) Vertical deflection
due to flexure

(b) Rotation due to
torsion

(¢) Distortion due to
torsion

Figure 2a/Separation of
general loading into bending
and torsional components
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Stress Components

Associated with these flexural and torsional
loads are three normal stresses, four shear
stresses, and one bending stress through the
plate thickness. Typical diagrams for each of
these stresses are shown in Figures 3 through 10.
The stresses in Figures 3 and 4 are due to
bending about the horizontal axis. Figure 5
shows the Saint-Venant shear flow diagram. The
shear stress, T, is a function of the box wall
thickness and the reciprocal of the enclosed area
of the box. Figure 6 shows the normal torsional
warping stress. This stress is generally very small
in closed box sections and can be ignored.
Figure 7 shows the warping shear stress asso-
ciated with the normal stresses in Figure 6.
Figures 8 through 10 represent stress diagrams
for the stresses associated with distortion of the
box cross section. These stresses were first calcu-
lated by Vlasov (27). Dabrowski (4) developed
the equations shown with Figures 8 through 10.
The stress diagram in Figure 10 is for the stress
in the outside fiber of the box components. Dis-

tortional stresses occur because the section is at-
tempting to become more round. If the box were
round, distortional stresses would be zero. Dis-
tortion stresses are decreased by the addition of
diaphragms. Without diaphragms, the distortion
stresses may be large if torsion is large.

The equation for the calculation of each stress
component is given on the corresponding figure.
These equations for torsional behavior are devel-
oped in Reference (12). Torsional properties for
composite sections are calculated by equations
given in References (9) and (10).

Torsional warping stresses in box sections are
generally negligible; however, if the section has
only three sides (trough boxes) without sufficient
top bracing, the torsional warping stresses and
rotational deflection before the deck cures may
be large. Top bracing of such sections is general-
ly advisable.

Figure 3/Normal Bending
Stress
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Figure 4/Bending

shear flow \
diagram 7\ \ \
~ _V
T, =7
Figure 5/Saint-
Venant Shear
flow diagram l 1
| | |
| T tT=2

Figure 6/Normal
torsional
warping stress

Figure 7/Torsional
warping shear
flow diagram




Figure 8/Normal
distortional
warping stress

Figure 9/Distortional
warping shear
flow diagram
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Figure 10/ Distortional
transverse bending /
stress diagram
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The magnitude of the torsional stresses varies
with respect to diaphragm rigidity, diaphragm
spacing, and location of torsional load. Figures
11, 12 and 13 show typical influence lines for
normal torsional warping stress, normal distor-
tional stress, and transverse distortional bending
stress at midpoint of diaphragm spacing, respec-
tively. In Figure 11, the end points of the box are
assumed to have rigid diaphragms which do not
permit cross-section deformation, but do not
restrain box movement in the normal direction.
This condition is referred to as torsionally
pinned. The effect of a diaphragm added at mid-
point is shown by the dotted curve. The added
diaphragm provides torsional rigidity, or forbids
the movement of the box in the normal direc-
tion, or cross section out-of-plane displacement.
If a concentrated torque is applied at this dia-
phragm there is no effect. However, if the torque
is applied at some other point, the diaphragm
attracts the torque, slightly increasing the normal
warping stress at the diaphragm. This situation

might occur at a bearing diaphragm. There are
no stress values provided on the ordinates;
however, the stresses are generally inconsequen-
tial for closed box members.

The dashed line in Figure 12 shows the influ-
ence on normal distortional stress if a rigid
diaphragm is added at midpoint. The dia-
phragms in this instance need not be torsionally
rigid. The addition of the diaphragm reduces the
normal distortional stress at the point of the new
diaphragm if the torque is applied at the new
diaphragm. However, if it is applied at the
quarter points of the original panel, the stresses
may be as high as without the diaphragm. Thus,
normal distortional stresses should be rechecked
for various loading conditions after the addition
of a diaphragm.

Figure 13 shows the dramatic reduction in
distortional transverse bending stress obtained by
the addition of a diaphragm. However, it may be
necessary to also check these stresses for differ-
ent load positions.

Figure 11/Influence

line for normal Without

torsional warping Diaphragm

stress o, at mid-

panel with ends
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With I
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Figure 12/Influence With

line for normal Diaphragm

distortional warping
stress g, at midpanel
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Figure 13/Influence ,
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Structural
Analysis

The prior discussion tacitly assumed that
bending moment and torque were known when
examining the behavior of a single box element.
Analysis must consider the torsional, as well as
flexural stiffness of the box members, so more
unknowns must be considered. This makes the
problem more complicated than the similar
problem of a bridge composed of a deck
supported by a series of torsionally weak girders.
Analysis of this common I-girder bridge system
resulted in the familiar AASHTO wheel load
distribution factors which greatly simplify design
of multiple girder bridges. The AASHTO Bridge
Specifications (Sections 1.7.49 and 1.7.64) give a
similar wheel load distribution factor for typical
box bridges made up of multiple single-cell
boxes—based on work done by Mattock (2,16,17).
In this study Mattock found intermediate dia-
phragms were not needed to control distortional
stresses within the parameters specified. The
study included spans up to 150 feet. A study by
Heins et al reported the approximate torque in
simple span curved box bridges with various
radii, and spans ranging from 50 to 150 feet with
one girder per lane (28). A summary of this work
is shown in Figure 14. If fewer girders per lane
are used, the torque will increase and, conver-
sely, with more girders per lane, the torque per
box will decrease. Several computer programs are
available to analyze bridges which are not
covered in these categories (3,6,13,14,26). Refer-
ence (8) gives a tabulation of available computer
programs and their capabilities.

In the analysis of simple span structures with
single boxes, such as some transit systems,
moments and torques, can be calculated directly.

Single continuous box girders should be
examined for additional unknowns introduced
where torsion is restrained by the bearings.

One investigation (28) showed that the
AASHTO straight box wheel load factor could be
modified by the following relationships to
provide live load moments and torques for
simple span curved box girders:

Moment — [1440 X_ + 4.8 X + 1] W, (1)
Torque — [18550 X + 50 X] W, 2
|
where: X = -
radius

W, = AASHTO wheel load distribution factor.

These empirical relationships were developed
from studies where the piers were radial with
respect to the center of curvature. The wheel
load factor is applicable only for bridges without
skew.
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Skewed Bridges

Skewed bridges are subjected to additional
forces. These forces introduce additional
moment into the girders and slab which must be
considered in design. In the case of box bridges,
the increased torsional stiffness can cause addi-
tional moments and torques in the box. Figure
15 shows a schematic plan view of a single box
with skewed supports and a single load, P, at the
center. Reactions R, and R, are equal because of
symmetry in this example, as are R, and R.. But
more important, R, and R, are greater than R,
and R¢. This difference introduces equal and
opposite torques and longitudinal moments at

the ends of the box. As the skew and/or the box
width increase, these moments and torques
increase.

When piers supporting curved box girders are
not perpendicular to the tangent of the girders, a
similar effect is experienced. This situation addi-
tionally complicates the analysis, and increases
the forces the bridge must resist. As a result,
designers seem to avoid the situation when
possible (7).

Figure 15/Plan of skewed box
with load “P” at center

Box Girder)
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Shear Lag

The first order assumption that plane sections
remain plane after bending is not always appro-
priate with box sections. If a box flange is partic-
ularly wide, normal stress in the flange near the
webs may be significantly higher than at mid-
width because the shear rigidity of the flange is
less than the axial rigidity. If longitudinal stiffen-
ers are present, the rigidity of the flange in the
longitudinal direction is increased with no in-
crease in the shear rigidity; as a result, shear lag
is accentuated.

Moffat and Dowling (19) report the effective
width ratio for flexural stress is 0.52 when
width/span = 0.2 for a concentrated load and no
longitudinal stiffeners. When longitudinal stif-
feners are added such that their area equals the
area of the flange, the effective width is reduced
to 0.40. The concentrated load condition can rep-
resent the pier location on continuous spans.
With uniform loading, the effect of shear lag is
less severe.

The shear lag effect also influences the behav-
ior of longitudinal reinforcement in the slab.
The shear transfer between these bars and the
girder is by the concrete slab. Cracks in the slab
have the effect of reducing the shear rigidity and
decreasing the effective width. The result is
increased bending stresses. Composite steel and
concrete bridges with webs widely spaced may
not act as fully composite structures for this
reason. The stresses in shear connectors and
concrete slab should be examined for this situa-
tion in design of composite bridges where the
box width exceeds about 16 times the structural
slab thickness.
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Fatigue

Welded box girders are subject to more stress
components than I-girders, as previously
discussed. The additional stresses should be
considered in the design, although box girders
are not particularly fatigue-critical.

Number of Cycles/The normal stress in a box
girder is composed of flexural, torsional warping
and distortional warping. These stresses will be
additive at one location in the cross section. The
maximum stress is at a corner of the box.

In straight girders, the sense of torsion may
be either positive or negative, depending on the
location of the loads with respect to the shear
center of the box girder. The fatigue stress can
be conservatively calculated as the maximum
tensile stress found by superposition of all
normal stresses. Transverse bending stresses
contribute a normal component due to the
Poisson effect. Since superposition applies only
for cases when the stress states can exist simulta-
neously, it is rarely necessary to add all possible
stresses.

The possibility of stresses in diaphragm
members and associated stresses, as well as
distortional transverse bending stresses under-
going full reversal in straight girders exists, but
is remote. Most traffic passes within specific
lanes, and stress reversal requires alternating
trucks to be in alternating critical locations.
Engineering judgment must be exercised in such
cases. One approach may be to increase the
calculated diaphragm or transverse bending
stresses by some percentage to account for
uncertainty in vehicle location.

Diaphragms/In straight multiple girder struc-
tures, torsion is small and diaphragm forces are
relatively small. However, the force in diaphragm
members of boxes can be significant. It is advis-
able to consider the local effect this force has on
the box webs and flanges. Additional, less rigid
diaphragms are sometimes needed to reduce
thrust forces against the box components.

Top Lateral Bracing/ Although these members
may be ignored in the structural design of trough
girders for live load, they may have an effect on
the fatigue behavior of the main members (18). If
they are fillet welded to the top flange, the
flange stresses are limited by Category D or E in
AASHTO.

Shear Connectors/When torsional loads are
significant, the additonal force due to Saint-
Venant shear should be vectorially added to the
shear connectors. It has been found that the tor-
sional warping shear and the distortional warping
shear are not significant (24). Thus, the shear
connector force, V, is found by Equation 3:

V.= VitV (3)

where V, = bending shear

V,, = Saint-Venant torsional shear

Transverse Stiffeners/The stress concentration
at the end of transverse stiffeners, due to distor-
tional transverse bending stresses in the web or
flanges, can be substantial. The web stiffeners
often are not welded to the flanges, causing very
high local stresses at the end of the stiffeners. If
the transverse stiffeners are welded to the
flanges, the welds, as well as the base material
stressing are reduced substantially. The base
metal fatigue stress would be controlled by
AASHTO Category E in either case. In the first
case, moment is resisted only by the web. In the
second case, the stiffener helps transfer moment
into the flange, mitigating the strain concentra-
tion. Category F should be used for the stiffener
welds. This discontinuity can be improved fur-
ther by the addition of transverse flange stiffen-
ers attached to the transverse web stiffeners.
Ideally, avoidance of these transverse stiffeners
by increasing the web thickness is most desir-
able. In high shear regions with large torsion,
closely spaced diaphragms will reduce box distor-
tion and associated stresses.

Flange-to-Web Welds/Fillet welds on both
sides of the web provide more resistance to
distortion of the box corners than single side
welds which can develop high strains. If torsion
is nominal-as is the case with box girders within
AASHTO parameters-single side welding is usu-
ally satisfactory. A full-penetration flange- web
weld is sometimes specified (7), but is generally
not necessary.




Vibration

Vibration of girders in rapid transit systems has
received much attention, and most transit criteria
specify a minimum fundamental frequency for
flexure. The fundamental frequency of a simple
span bridge is given by Equation 4:

E xNB x1Ix
- iz —I/_W—g (4)
2L
where: L = span length

W = bridge weight per length
g = acceleration of gravity
NB = number of boxes
E = Young’s modulus
I = moment of inertia of one box

When f greater than  is required:

4t w

NB x [ > (5)

The moment of inertia is a function of girder
depth squared, and the flange areas. An approxi-
mate relationship for required depth, h, based on
the above assumptions is given by Equation 6:

h= KfXL-/ ﬂngBxExg (6)

where: Aﬂg

area of bottom flange

K; = constant which is a function of
the ratio of top to bottom flange
areas

The torsional vibration mode of box members
may be significant. This analysis is presented in
Reference (6).
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Beam on Elastic Foundation Analogy

Distortional stresses in box beams may be
examined, using the Beam on Elastic Founda-
tion (BEF) analogy first discussed by Vlasov (27),
and extended by Abdel-Samad, Wright, et al
(1,30,31), and later by Williamson (29). The accu-
racy of this analogy has been confirmed by tests
(20). In the analogy the diaphragms, or trans-

verse cross bracing, are analogous to interme-
diate supports in the BEF, and the resistance to
distortion provided by the box cross section is
analogous to a continuous elastic foundation. A
discussion of this analogy and an example using
certain charts is contained in the Appendix.




Design
Considerations

Torsionally induced forces and wide-flange plates
cause the proportioning of box girders to be
somewhat more complex than I-girders. In single
box, or horizontally curved box structures
torsion is a significant factor, and distortion of
the box may cause significant stresses in the box.

However, as the BEF charts indicate, addition of
diaphragms significantly reduces the box stresses
due to distortion so that box components can
generally be proportioned for flexural stresses
with no more than 10 percent allowance for
normal stresses due to torsion.

Selection of Steel

Significant economies can be realized by judi-
cious selection of steels. The most commonly
used grades in bridge construction are all candi-
dates for box construction. A recent survey
showed that weathering steel is probably the
most commonly used steel in U.S. box bridges. It
combines high design stresses with minimal
maintenance cost, providing much the same
economies designers realize in I-girder bridges.
The bottom flange is generally stiffened longi-
tudinally in compression regions. Therefore, the
higher strength of weathering steel can usually
be mobilized with little or no additional fabrica-
tion beyond that for carbon steel. One cost
comparison from several fabricators of a rapid
transit system showed the average prices of

ASTM-AS588 weathering steel box girders to be
about 5 percent less than a similar, painted
ASTM-A36 design. As in many transit systems,
the girders were simple span.

Short- to medium-span continuous box bridges
are generally kept at a constant depth to simplify
fabrication of the boxes. Thus, the optimum
depth is a compromise between the optimum
depth at the piers and at midspan. The location
of piers is often fixed by other constraints, and
in the case of box girders, the flange width is
constant.

Optimum Box Configuration

Optimizing the box configuration includes selec-
ting the number of boxes, their depth, and
width. Span ratios can affect the box configura-
tion, and should be varied in conjunction with
selecting proportions for the boxes.

If the design is to meet present AASHTO
(1980) requirements, the ratio of box width to
lane width, R, is limited to 1.5. The wheel load
distribution factor per box is reduced as the box
width is increased. The opposing factor to wide
boxes is effective use of the flange material.
Particularly in continuous bridges, shear lag
should be considered at the pier locations if the
web spacing is greater than five times the dis-
tance between points of contraflexure. Longitu-
dinal flange stiffening can mobilize the full
flange area in compression, but excessive stif-
fening is expensive and contributes to the shear
lag. Inclined webs provide more uniformly
spaced support for the slab in conjunction with a
narrower bottom flange. The cost of inclined
webs for tangent girders with constant depth is
not significantly different from girders with
rectangular cross sections,
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Optimal box depth is, perhaps, more critical
for box girders than I-girders because the flange
size can be varied less over the bridge length.
Figure 2b shows that, for vertical loads applied at
the sides of a box, shear is proportional to the
box width and inversely proportional to the box
depth; thus, boxes that are overly shallow have
high shear forces. The optimal depth of I-girders
is often a good starting point in optimizing the
box depth.




Flange Design

Longitudinal flange stiffening in compression
flanges is suggested by AASHTO if b/t exceeds
60. However, many designers use longitudinal
stiffeners when b/t exceeds 45 (7). When
designed by AASHTO, longitudinal stiffeners are
proportioned by a stiffness criterion which
controls the buckling of the flange plate. The
stiffness is a function of the plate buckling coef-
ficient, k.

When k=4.0, the stiffeners are sufficiently
rigid to force plate buckling between the stiffen-
ers. When k is less than 4.0, the rigidity of the
stiffeners is reduced so that they will not form
nodal points for plate buckling, and buckling of
the stiffeners will occur. The required size of
stiffeners increase as their spacing decreases
because the panel becomes smaller, thus increas-
ing the buckling stress of the panels.

There is no consideration in AASHTO for
overall buckling of the longitudinal stiffener as a
column. This mode of failure usually is not
critical because of the short negative moment
region. However, AASHTO provisions recom-
mend a transverse stiffener be placed at the
point of dead load contraflexure, which stabilizes
the longitudinal stiffeners. If the longitudinal
stiffeners become slender and the flange is wide,
the engineer may wish to examine overall
column buckling of the stiffener. The AASHTO

working stress provisions permit the use of trans-
verse flange stiffeners in conjunction with longi-
tudinal stiffeners designed with k=4.0. Timo-
shenko and Gere (25) present a more exhaustive
discussion on elastic buckling of stiffened plates.
The most common type of longitudinal flange
stiffener is an inverted tee section which
provides the desired stiffness with minimum
material. The potential of lateral torsional buck-
ling is minimal with structural tee stiffeners.
Lateral torsional buckling would be a considera-
tion with an unsymmetrical stiffener such as an
angle, although angles are used to stiffen box
flanges—particularly in Europe. Bars are also
frequently used for longitudinal stiffeners where
minimal flange stiffening is needed.
Longitudinal stiffeners are generally not re-
quired on tension flanges. However, erection of
the members may cause temporary compression
stresses in regions where the design stresses are
tensile. Stiffeners may be desirable in these
cases. Full-length longitudinal stiffeners also
eliminate termination of the stiffeners where
allowable fatigue stresses are a constraint.
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Web Design

The shear forces in box girders often are similar
to those in I-girder bridges, because the number
of webs is often similar and the torsional shear
forces are often negligible. In other cases such as
boxes with inclined webs, or wide boxes where
the number of webs is reduced and the torsional
loads increased, shear forces become significantly
larger than found in I-girders.

Information on size availability of plates from
the mills and size price premiums helps to avoid
selection of web plates requiring unnecessary
shop splices or price extras because of size.
Often it is beneficial to change plate thickness if
a shop splice is needed. Otherwise, addition of a
shop splice for the purpose of changing web
thickness is rarely economical.

The question of stiffening a thinner plate vs. a
heavier plate with few stiffeners often compli-
cates web design. Fabricators find that, due to
more intense fabrication, stiffeners cost about six
to eight times web material on a weight basis.
Thus, a pound of stiffener should save at least
six pounds of web, to be economical. This trade-
off often provides the designer with a series of
web thicknesses from which to choose, but some
fundamental rules of thumb have been found to
generally apply. If h/t is less than 170, longitu-

dinal stiffeners are not required by AASHTO. If
h/t does not exceed 150, transverse stiffeners
may be omitted entirely when the shear stress is

5.625 x 107

2
(c/t)

height of box, and t_ is the web thickness. If
torsion is small, the decision of web stiffening is
an economic one. The c/t. limit of 150 for webs
without transverse stiffeners tends to penalize
high-strength webs by not permitting the design
to use the increased shear strength available.
This is one of the reasons hybrid flange-web
girders are economical.

Economy is often gained by selecting a web
depth which is maximum for the web thickness
examined because plate material comes in dis-
crete thicknesses. For example, if a c/t. of 150 is
desired and the web thickness is 9/16 inch
(.5625 in.), the optimum web depth is 150
(.5625) =~ 84 inches.

less than by AASHTO. c is inclined




Splices

Welded shop splices of box girders are generally
more economical than shop bolted splices. Full-
penetration shop welds are used, and radio-
graphic inspection is required by AASHTO.
Because of the wider flanges, welding and radio-
graphic costs are somewhat higher than for I-
girders. As a result, it is often desirable to splice
box girder flanges less frequently than I-girders.
Field splices are located in much the same
manner as [-girders. They are sometimes welded
to provide a smooth appearance, and this method

has been found to be competitive with bolting.
However, bolting has other advantages. For
example, if longitudinal stiffeners are used in the
compression flange of continuous girders, they
can be discontinued at the centerline of a bolted
splice without concern for fatigue because the
stress at the terminus is zero. Bolting also elimi-
nates the need to predict change in camber due
to field welding.

Single- and Muitiple-Cell Boxes

A multiple-cell box girder bridge consists of a
single box with a series of webs. The webs
reduce the shear lag that can occur in the
flanges. They also share the shear forces. These

bridges are most economical for very long spans.
The use of common bottom flange is effective in
creating more equal deformations between adja-
cent girders, and thus better load distribution (15).

Open Top Box Girders

Many box girders are built using three steel
sides, with the composite concrete deck complet-
ing the box enclosure. These are often referred
to as “trough-type” or “bathtub” girders. If the
top flanges are unbraced, they are subject to
lateral torsional instability before the concrete
deck has hardened. Therefore, cross bracing as
shown in Figure 16 is desirable. One investiga-
tion showed that, to cause the box to act as a
closed section, the required cross sectional area
of the bracing equals .03 x (box width) if the
diagonal bracing is at 45 degrees. Perpendicular
bracing is not effective in shear transfer between
the top flanges. The slenderness (L, /r) of bracing
members should be less than 100.

Permanent steel deck forming can be used for
top lateral bracing if forms are properly con-
nected to the flanges (11). This may be economi-

cal when compared to the fabrication of bracing
members.

Top bracing may be eliminated in some cases
by introducing intermediate diaphragms which
will prevent lateral buckling of the top flanges in
conjunction with a torsionally rigid diaphragm
which will prevent warping of the trough prior to
curing of the deck. These girders do not provide
the same torsional rigidity as boxes with top
lateral bracing and are not adequate for curved
girders where torsional forces are large.

Open top box girders should not be considered
impervious to moisture, and the inside should be
protected, or weathering steel used. Provision for
inspection of the interior is also desirable.
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Figure 16/Schematic of typical
top bracing for trough box
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Diaphragms

Diaphragms prevent distortion of the box,
causing an increase in the ability of the box to
distribute loads transversely and reduce both
normal and transverse distortional stresses.

Diaphragms which are rigid in the normal direc-
tion of the box, as shown in Figure 17, will cause
an increase in the warping rigidity of the box.
This type of diaphragm does not provide a signi-
ficant benefit to the behavior of the box girder.

Figure 17/Internal diaphragm
providing warping restraint

- mop Flanges
o | _ Plate —
I| Diaphragm -JIY‘
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|

i
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Stiffeners
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For curved box designs, Equation 7 provides
diaphragm spacing, /, which limits normal distor-
tional stresses to about 10 percent of the bending
stresses (22,23) for dead load and HS 20 loading:

R
<LV =700 <% it

where: R = bridge radius, ft
L = simple span length, ft

This equation can be used for cases with one
or more boxes per lane and radial piers. For
other conditions, a computer analysis which
includes distortional effects should be consid-
ered. The BEF charts in the Appendix can be
used to aid in determining diaphragm require-
ments.

Studies show that the area of the cross bracing,
A,, in diaphragms need not be greater than that
given in Equation 8, which provides a “q” greater
than 1000 (29). The value of q is the relative

distortional resistance per inch of length of box:

3
_asof ][
Ab_750[h2][(h+a)] @

where: t = the thicker plate, either flange or web
! = diaphragm spacing
h = box height
a = width of box at top




Many studies have indicated that box members
have properties such that some torsional com-
ponent stresses may be neglected. The para-
meter, y, determined by Equation 9, will permit
the designer to determine which torsional
stresses need be considered:

y=Lv GK,/El, (9)
where: G = shear modulus

K. = torsional constant
I, = warping constant

When y is less than 0.4, evaluation of stresses
due to pure warping torsion may be omitted;
however, torsional distortion must be considered.
When y is greater than 10, evaluation of stresses
due to torsional distortion may be omitted; pure
torsion must be considered. For curved multiple-
box girder bridges, y must have the following
values if torsional warping is to be neglected (21):

for 0 < @ <0.5 and
for @ > 0.5

y>10+40 @
y>30

where: @ = subtended angle (radians)
between radial piers

Figure 17 shows a solid plate diaphragm with
stiffeners. These stiffeners may cause restraint in
the normal direction, inducing increased bimo-
ment in the box. Bimoment or bending across
the flanges is caused by either applying a varying
torque or varying torsional restraint of the mem-
ber which will forbid uniform torsional shear
stresses. A torsionally stiff diaphragm can sub-
stantially vary the torsional stiffness of the box.

Figure 18 shows some of the forces applied to
a plate diaphragm at a reaction. The deep beam
bending in the diaphragm is accentuated by the
centrally located bearing and trapezoidal cross
section of the box. The deep beam bending
introduces transverse compression stress in the
bottom flange of the box. Bearing stresses are
also present in the bottom flange. The Poisson
effect on these actions causes additional longitu-
dinal compressive stresses which should be
added to the bending stresses at interior sup-
ports. The flange capacity can be checked by
a yield criterion.

Intermediate diaphragms are often cross-brace
diaphragms composed of angles attached to trans-
verse stiffeners. The effect of these diaphragms is
dependent on their axial stiffness which prevents
distortion of the box cross section. It is generally
good design practice to include a large number
of diaphragms with less stiffness than a few very
rigid diaphragms. Rigid diaphragms, widely
spaced, may introduce undesirable large local
forces into the sides of the box. They can be
designed using the BEF charts in the Appendix.
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Figure 18/Stresses in plate
diaphragm at bearing (Ref. 5)
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ox Girders With Floor Beams

Figure 19 shows one alternative to the typical
multibox girder structure. In this instance, the
floor beams transfer the loads to the main box
girders. The floor beams are connected at inter-
nal diaphragms within the boxes. The slab can
be designed as composite in two directions, and
reinforcement placed for two-way action. The
AASHTO wheel load distribution factor for box
girders is not appropriate. Since torsion is not
significant, a grid analysis without distortion or

torsional warping may be satisfactory for design.

There are several advantages of such a
scheme:
1. Smooth appearance of bridge-pier interface
2. Effective use of bottom flange material
throughout the span
3. Avoids forming and casting pier cap
4. Reduces number of main girders, bearings,
and splices

. Each girder is designed for more total load, so

a single truck produces proportionately less
stress than in a multi-girder bridge, and
fatigue is less critical on the box members.
Reduction for simultaneous loading of multiple
lanes under AASHTO Section 1.2.9 may bring
about additional economy.

Disadvantages of the scheme are:

. There is an increase in the reinforcement in

the deck, and forming of the deck is more
expensive. However, prestressed concrete deck
panels may be used as composite forms to
minimize deck costs.

. The depth of the structure may need to be

increased because of the greater moment per
main member.

. The number of fabricated pieces may be

increased.
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Figure 19/ Typical steel
2-box system with
external diaphragms
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Appendix

Beam on Elastic Foundation Analogy for
Determining Distortional Stresses in Box

Girders

This presentation is based on work performed at
the University of Illinois under the direction of
R. N. Wright, and sponsored by the American
Iron and Steel Institute. The example is also
taken from this work, with minor modifications.

The deflection, &, shown in Figure Alc is due
to a torsional load shown in Figure Ala. Deflec-

tion,

of th

61b is the reciprocal of the torsional stiffness
e

ox, and analogous to the reciprocal of

the foundation modulus in the BEF problem. It
is computed as follows:

_ ab c| 2ab
%" @+ {Dc[a—i-b V(%”Lb)]+
where:
-1—[(2a+b)abc]+i[ba3]
DC Da
v —

a+b

2c(a +ab+b)
D D,

a

v = compatibility shear at center of bottom flange

D, =E£ /12(1— )
D, = Et /12(1— )
D, =EL/12(1— )

where: t,, t,, t. = top flange, bottom flange, and

web thickness in.
p = Poisson’s ratio

transverse flexural rigidity of
2
an unstiffened plate (k-in /in )

—v] ] (A1)

(A2)

(A3a)
(A3b)
(A3c)

The term, v, is the compatibility shear at the
center of the bottom flange when unit loads are
applied at the top corners of the box section of
unit length as shown in Figure Ala. The center

of the bottom flange was chosen by Wright (30)
because the transverse bending moment and
thrust are zero at this point. Dimensions used in
Equation 8 are shown in Figure Alb.
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Figure A1/Box under uniform
torsional loading
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When transverse stiffeners are present on
either flanges or webs, they should be considered
in calculating transverse flexural rigidities. The
rigidity of the stiffened plate is calculated as
follows:

EL A

- — 3

q (A3d)
where: I, = moment of inertia of stiffened plate
d = stiffener spacing

The effective width of plate, d,, acting with a
stiffener can be determined as follows:

__d tanh (5.6 d/h)

dy S.6d a— 2) (A4)
h H
where: h = transverse length of element,
“b” OI' “c”

Equation A4 is a semiempirical relationship
which Wright et al found to give reliably accu-
rate results (30).

The BEF stiffness parameter, B, in the analogy
is calculated as follows:

4/
B~ Ve
EI3,

where: I = moment of inertia of the box section

(A5)

Stiffness parameter, B, is a measure of the tor-
sional stiffness of the beam, and is analogous to
the beam-foundation parameter in the Beam on
Elastic Foundation problem. The diaphragms in
the box girder restrict box deformation, and are
analogous to supports in the BEF. They are
incorporated in the solution by the term “g”,
which is the dimensionless ratio of diaphragm
stiffness to the box stiffness per unit. It is
defined as follows:

_ EbAb 62
N R

where: E, = Young’s modulus of diaphragm
material
A, = cross-sectional area of one
diaphragm bracing member
L, = length of diaphragm brace

(A6)

2(+a/b)

S

2

(6] (A7)

where: § = deformation of the bracing member
(see Figure Alc)

Equation A6 tacitly assumes that cross bracing
is effective in both compression and tension. If
the bracing slenderness is large, the bracing is
only effective in tension, and A, in Equation A6
should be one-half the area of one brace.

The stresses derived from distortion of the box
can be determined analogously by solving the
BEF problem. Moment in the BEF is analogous
to normal distortional stress, o,,, and deflection
in the BEF is analogous to distortional trans-
verse bending stress, 6,. The reactions in the
BEF are analogous to the forces in cross bracing,
F,. Solutions for these three components are
presented in graphical form in Figures A2
through AlQ. These figures give a “C” value
which is used in appropriate equations—A8, Al0,
A1l These graphs show relationships for uni-
form torque, m, or concentrated torque, T, at
midpanel or diaphragms. The figures give the
appropriate “C” values for a given box geometry,
B, loading, diaphragm stiffness, q, and spacing, /.
The designer is able to determine the distortion-
related stresses, and estimate how diaphragm
spacing and stiffness may be best modified if
necessary.

Equation A8 gives transverse bending stresses
at the top or bottom corners of the box section,
depending on the determination of F, in Equa-
tions A9a and A9b. The critical stress may be in
either the web or flange. The AASHTO Specifi-
cation limits the range of the transverse bending
stresses to 20,000 psi. Therefore, the torsion in
both directions often must be determined. The
stress range is the sum of absolute values of
stresses due to opposite torques.

0,—CF, Bz_la (ml or T) (A8)

where:  m — uniform torque per unit length
T = concentrated torque
F,= % for bottom corner of box (A9a)
Foms (a3 )
for top corner of box (ASb)
where: S = section modulus of transverse

member (see Figure Alc)




Equation AlQ gives the normal distortional
warping stress at any point in the cross section.
The value of C, is obtained from either Figures

axis of the box point under
consideration

Equation All gives the axial force due to dis-
C, is obtained from either A5 or AlQ.
1 / atby
1+( 2h ) (ml or T)
a

2(1 +a/b)

F,=G

A2, A3 or A9.
C,v
Oy = Ia (ml or T) (A10)

where: y = distance from the transverse vertical

tortional forces applied to the box. The value of

(A11)

Since only two loading positions for concen-
trated loads are considered in the charts, it is
often necessary to interpolate between figures.
The principle of superposition applies for more
than one torque. Figure All shows the effect of
B on the influence line for diaphragm forces
when the diaphragm is rigid.

Figure A2/Uniform torque on
continuous beam—normal
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Figure A4/Uniform torque on
continuous beam—distortional

23

transverse bending stress at 10 E t =
midpanel 50k {o ;L !
I 1 »
q="co l:/ (
310 ool—l—ll 10 1
e A == = 3 =
05— ! |
0.1 L
.01 .05 0.1 05 10
Ct
Figure A5/Uniform torque on
continuous beam-diaphragm 10 I
force E m }
5.0 - N
B m gmm g” N
L5
& 1.0
0.5 +HH
g=1[110:] =
0.1
.01 .05 0.1 0.5 1.0
Cb
Figure A6/Concentrated
torque at midpanel on contin- 10
uous beam-distortional T HH -
transverse bending stress at 50 . B L -
load ' 777%’" 717 g” !
°tl al
L—’l /7 /1
1.0 =<l £ i
& = 10
0.5 2 00 7
1
== aniy dammARi
10,000 ] '
0.1 || {41 ' .
.001 .005 .01 05 0.1 05 10
Cl




Figure A7/Concentrated
torque at midpane! on con-
tinuous beam—distortional
transverse bending stress at
diaphragm

Figure A8/Concentrated
torque at diaphragm on con-
tinuous beam —distortional
transverse bending stress at
diaphragm
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Figure A9/Concentrated
torque at midpanel on con-
tinuous beam-normal distor-
tional warping stress at
midpanel

10 W
50 T B —
T [ [t — l
R i 95 G
N N N
1 O \Ni\ - \\ /0 \\ |
~ = : ;
05F—HS Z v :
OO \ ]
\ ) | !
i !
.01 ) 1 i
.001 .005 .01 .05 0.1 05 10
Ct
.
10‘_—_:—_' <
—— N
50 pw—o é Eq%
L l l l l N \
N \
NEIL
g 10 = 100 100
—9=\{1000 e e e 5 s e i 1 03
05 N ) L
Y 1
\ ' |
) U :
0.1 : I
.001 005 .01 05 01 05 1.0
Ct
. T
10 | — ——|»——>
5.0 ”’%”"”’ %’” e
0dw | J
‘ l i |
1A
a 10 7
: 3 i
007
71000
O L
ST b
0.1 dlic gl I il
01 .05 041 05 1.0
C




Figure A10/Load at dia-
phragm on continuous beam -
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BEF Example

To demonstrate the use of the BEF charts, a
short example is presented. Final member sizes
and design torques are assumed given, for
brevity. Pertinent properties are given in Table 1
and Figure A12. This example is based on data
in Reference (30). The torsional load due to a
single axle is assumed to be 2000 k-in.

Figure A12 100" N 21 Deck

1-1/2" Haunch

-— Plate 61" x 3/8”

Plate 80" x 9/16"
t

101 80" ]
1

Cross Section '

Transverse web stiffeners: Bar 6” x 3/8" one side of web

Diaphragm spacing: 300 in.
Stiffener spacing: 60 in.

Table 1-Section Properties

Units Midspan From Equation
1 in' 1.90 x 10°
Yiop in. 15.41
Yoottom in. 49.59
v 058 (A2)
5 in’/k 822 (A1)
5, in/k 1.285 (A7)
B in’ 3.84 x 10° (A5)

3. -2
S in /in 7.16 x 10

F, (top corner critical) in 270 (A9a) (A9b)
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Steel F, = 36 ksi
E = 29,000
p=0.30
Concrete: . = 4,000 psi
n=2§8
E = 3625 ksi
p=0.30
ICOmposite = 190,000 in4
Et,
Da = _'—2
12(1— )
3
D, = 2B XT _ 114000 k-in’/in
12(1~.3)

Find effective width of plate at transverse stiffeners.

_ dtanh (5.6 d/h)

° S. 6 d
2251 — )
_ 60 tanh (5.6) (60/60) _ 11.8 in.
° 5.6 (60) (- 32) R—
60 )

Effective rigidity of web with transverse
stiffener
I, = 22in’

EL, 29000 x 22

D°=F=T 10,630 k-in */in
3
Et,
D, = ———
21— )
3
D, - 2006562 _ 47 4 in%in

120-3)

1 1 3
D [ (2a + b)abc] + D [ba’]

C a

2c(a +ab+b) b
(a+b)[D D Db]

a C

v =

c=60+1.5+%=65 in.

1
=m ’ [ (2 x 100) + 80] [100 x 80 x 65] / 114000 [80x100]
3 2
100 2 x 65 (100 +(100x80)+80) __]
(100 + 80) [ 114,000 + 10,630 + 473
v=.058

(A3a)

(A9)

(A3d)

(A3b)

(A2)



28

_ ab <] 2ab a b
' 2+ b) Dc[a+b v(2a+b)]+Da[a+b V] f (A1)
2
_ 100 x 80 65 [ 2x100x80 ] 100 [ 80 ]
' 24 (100 + 80) 3 10630L 100+ 80 08 ((2x100+80) [+ 7] o5 — 058
5 ~.822in"/k
4 1 Sbonom flange
B= El & (AS) 1 2 3. L3
¢ 9 I3 (.5625) = .053 in/in < .0716 in/in

— 384 x10" in"

_y/ 1
B 29,000 x 190,000 x .822

Assume spacing of interior bracing, I, to be 25
feet for first trial.

Bl=(3.84 x 107) (25 x 12) — 115

AASHTO Section 1.7.49 (c) (2) limits the range
of transverse bending stresses to 20,000 psi. If we
assume that the torque may be applied in either
direction, allowable 0, = %+ 10 ksi. The applied
torque is 2,000 k-in.

T
o =CF,B >a (A8)

2,000

10 = CF, x 00384 x 5>

CF, — 259

Calculate the section modulus, S..cp> Of the effec-
tive area of web and transverse stiffener.

I 220

L3,
B y (stiffener spacing) 512 x 60 .0716 in"/in

web

y = distance from neutral axis to extreme fiber
of stiffener and effective portion of web
plate

For the bottom corner of the box:

_bv_80x.058

¢T38 2x.053 (A%a)

~44in’

Spottom fange 1 CTitical at bottom corners of box.
From the top corner of the box:
a b
odl2]
¢« 2SLato "

_ 100 80
¢ 2x.0716L 100 + 80

(A9b)

058 ]

F,—270in"

Therefore, the top corners are critical, and S 1S
used to calculate o,.

The minimum C, can be determined as follows:

C, x 270 = 259
C, = .956

The critical point is at midpanel, with the
concentrated torque also at midpanel. This can
be visualized by consideration of the analogous
deflection of a beam on elastic foundations. This
case is treated in Figure A6. A “g” value of 1.0 is
satisfactory since the point C, = .956 and pl —
1.15 lies to the right and below q — 1.0 in the
figure. This value of “q” implies a nominal
diaphragm is satisfactory, but axial force in the
diaphragm should be checked.
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Determination of Diaphragm Brace Require-
ments/Using Equation (A6), the required brace
area can be calculated.

E A, 2
N ol R
() 1
2(1+a/b)

ab:'l/1+ra+b]2

L 2h

(A6)

5, (A7)

=+ 100/ 80)

5, — 20
2
-I/HF100+80]

L 2% 65

x .833

8, — 1.285 in /K

L, = V90’ + 60> =108 in.

Rewriting Equation (A6) with q = 1.0:

29,000 A,

2
0= e x 5 x 12 x 83 X 128
A, = .556 in’

Angles 5 x 5 x 5/16 provide the required area:
A,=3.03 in’. Using this size angle, “q” is recalcu-
lated using the ratio of actual to required brace
area times the required “q” value of 1.0 deter-

mined above:

_1.0x3.03
— = —544>>1.00K

The force in the brace is maximum, with
concentrated torque loads as close as possible to
the diaphragm. The influence line in Figure All
can be used to estimate the reaction at a rigid
diaphragm for loads in adjacent panels. The
torque of 2000 k-in. is due to a single rear axle
of an HS truck. Adjacent front axle and rear
axles produce torques of 400 k-in. and 2000 k-in.
respectively, each 14 feet from the diaphragm.
The equivalent torque is found by using the
influence line coefficients from Figure A1l.

2000 [1+ (1 + .25) (.51) ] — 3275 k-in.

From Figure AlO, C, is approximately equal to
0.6 for g=5.44. The brace force, F,, may be
calculated using Equation (A 11):

V 1+(iﬁ’)2

2h T
F,—=C, 2(1+a) (T) (A11)
b
2
'|/ 100 + 80
_ I+ ( 2 X 65 (3275)
F,=0.6 00
2 (1+%’
F, = 7.47 kips
L2
A, =303 in
7.47 .
o, = 3—03 x 1000 = 2,470 psi

Since the braces are assumed effective in
compression, the compression stress must be
checked.

From AASHTO, the allowable compression
stress is:

O, 1omnre — 16,980 — .53 (% )2

a

2
1og

— 16,980 — .53 ( 904

=10,723 psi >> 2,470 psi OK

The calculated maximum stress range is
2 x 2.47 = 4.94 ksi. This is within allowable
AASHTO fatigue stress of 5 ksi for 2,000,000
cycles for Category E, so the braces could be
welded. If higher stresses occur, bolted connec-
tions would be required.
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Determination of Normal Distortional Stress/
Normal stress is generally largest at midpanel,
with the concentrated torque applied at mid-
panel. This stress is analogous to moment in a
beam on elastic foundation. If the diaphragm
stiffness is low (q < 10), the critical condition
may occur at the diaphragm with the concentrat-
ed torque at the same location. This situation
can occur only when Bl is very small (Bl <1),
and is not a practical design situation.

The normal distortional stress is determined
using Equation (A10) and Figure A9 for concen-
trated torque:

C.y
%o~ Tga |
C, = is found to be 0.8 for =115 and q = 5.44

T] (A10)

0.80(y)

Ogy = ; - (2000)
1.9x10" x 3.84 x 10~ x 100

o, —.0219 y

Yootom — 498:59 00y, . —10.41 in.

The critical condition is at the bottom
of the box.

Gy, = 0219 x 49.59 = 1.09 ksi

The normal distortional stress is added to the
bending stresses produced by the critical torsion-
al condition. Often, the critical maximum bend-
ing stresses are produced by different positions
of live load.
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